

2009 Marking Scheme

Grade	Mark Re	equired	° condidator cohiovino crada
Awarded	(/ 125)	%	% candidates achieving grade
A	+86	69%	26.0%
В	+72	58%	26.2%
С	+58	46%	25.6%
D	+51	41%	7.4%
No award	<51	< 41%	14.8%

Section:	Multiple Choice		Extended A	Answer	Investigation	
Average Mark:	24.2	/40	32.7	/60	15.5	/25

20)09 ,	Adv	Higher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	D	88	 A lines created from the energy released as electrons move down to a particular energy level B electrons moving up absorb energy and do not release energy corresponding to a line C visible light has a wavelength range of 450nm to 700nm D the energy released when an electron drops down to a lower energy level is converted into electromagnetic radiation of a very particular wavelength
2	D	70	 ☑ A Electronegativity: C=2.5 and H=2.2 difference = 0.3 ☑ B Electronegativity: Na=0.9 and H=2.2 difference = 1.3 ∴ least covalent character ☑ C Electronegativity: N=3.0 and H=2.2 difference = 0.8 ☑ D Electronegativity: P=2.2 and H=2.2 difference = 0 ∴ most covalent character
3	A	74	$H^{+} + \bigcirc & \bigcirc & & & \\ & & & & \\ & & & & \\ & & & &$
4	С	49	No. of electron pairs = $\frac{10. \text{ of outer electrons in central atom + no. of bonds - charge}}{2}$ $= \frac{7+2-(-1)}{2} = \frac{10}{2} = 5 \text{ electron pairs (trigonal bipyramidal)}$
5	A	75	 A n-type semiconductors are doped with group 5 elements. Non-bonded electrons can migrate across semiconductor B semiconductors are covalent and there are no ions present C p-type semiconductors are doped with group 3 elements with positive holes which migrate D n-type have electrons and p-type have positive holes
6	С	29	 ☑ A LiCl is ionic and dissolves in water ☑ B MgCl₂ is ionic and dissolves in water ☑ C PCl₃ reacts with water to release fumes of white HCl(g) ☑ D CCl₄ is non-polar (due to tetrahedral shape) and will not mix of water
7	D	65	 A basic oxides react with acids but not bases B acidic oxides react with bases bit not acids C neutral oxides do not react with acids or bases D amphoteric oxides react with both acids and bases
8	В	46	tetraammine dichlorid copper (II) o ∴ [Cu(NH ₃) ₄ Cl ₂] 4 × NH ₃ ligands 2×Cl ⁻ ligands Cu ²⁺ central ion
8	В	46	 Tetraamminedichloridocopper(II) A NH₃ 2 chloride ion metal ion Charge on ligands ligand ligands ligand name metal ion complex Complex Formula = [CuCl₂(NH₃)₄] Ligands are listed alphabetically in both formula and name and can be different order for the same complex. In a ligand, the element which donates the pair of electrons is listed first e.g. OH₂ Complex has no overall charge due to Cu²⁺ ions being balanced by 2xCl⁻ ligands.
9	D	58	Image: A no of mol = $\mathbf{v} \times \mathbf{c} = 0.5 \times 0.1$ = 0.05mol (Na ⁺) ₂ SO ₄ ²⁻ f.u. \therefore 0.05mol SO ₄ ²⁻ ions Image: B no of mol = $\mathbf{v} \times \mathbf{c} = 0.25 \times 0.12 = 0.03$ mol Ba ²⁺ (Cl ⁻) ₂ f.u. \therefore 0.06mol Cl ⁻ ions Image: B no of mol = $\mathbf{v} \times \mathbf{c} = 0.3 \times 0.15 = 0.045$ mol K ⁺ I ⁻ f.u. \therefore 0.045mol I ⁻ ions Image: B no of mol = $\mathbf{v} \times \mathbf{c} = 0.3 \times 0.15 = 0.045$ mol K ⁺ I ⁻ f.u. \therefore 0.045mol I ⁻ ions Image: B no of mol = $\mathbf{v} \times \mathbf{c} = 0.4 \times 0.1 = 0.04$ mol Zn ²⁺ (NO ₃ ⁻) ₂ f.u. \therefore 0.08mol NO ₃ ⁻ ions

			$PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$					
10	~	/ /	$r Cl_5(g) \leftarrow r Cl_3(g) + Cl_2(g)$ $1 mol \qquad 1 mol \qquad 1 mol$					
10	C	64	But equilibrium concentration of PCl ₅ = 0.5 mol 0.5mol 0.5mol 0.5mol					
			Final volume = 0.5mol PCl5 remaining + 0.5 mol PCl3 produced + 0.5mol Cl2 produced = 1.5mol gas					
			🗷 A Temperature increases gradually and not at one time					
11		20	B Reaction stops at 25cm ³ NaOH and will not increase in temperature after this					
11	U	28	🗷 C Alkali added after 25cm ³ cools down mixture as there is no further reaction					
			☑D Alkali added after 25cm ³ cools down mixture as there is no further reaction					
			A removal of NO2 product increases forward reaction					
			equilibrium constant remains same as NO2 is replaced					
	•							
12	D	80	decrease in products decreases the equilibrium constant $K = \frac{1}{[N_2O_4]}$					
	U		decrease in products decreases the equilibrium constant					
			☑D increase in temp favours endothermic (forward) reaction					
			increase in products increases the equilibrium constant					
			A Recrystallisation of benzoic acid from water involves one phase only					
13	Λ		🗷 B Gas-liquid chromatography involves two phases as part of the process					
12	R		🗷 C Paper chromatography involves the two phases as part of the process					
			ED Solvent extraction involves the two phases as part of the process					
			n o. of mol X in water = $\mathbf{v} \times \mathbf{c} = 0.02 \times 0.05 = 0.001$ mol in water layer					
14	٨	22	n o. of mol X in chloroform = $\mathbf{v} \times \mathbf{c}$ = 0.0133 x 0.05 = 0.000665mol in chloroform layer					
14	A	33	$K = \frac{[X]_{chloroform}}{[X]_{water}} = \frac{0.000665 \text{ mol per } 25 \text{ cm}^3}{0.001 \text{ mol per } 25 \text{ cm}^3} = 0.665$					
			[X] _{water} 0.001mol per 25cm ³ - 0.003					
			⊠A boric acid is a weak acid in a solution of one of its salts ∴used as buffer					
15	D	72	B nitric acid is a strong acid and <u>cannot</u> be used to make a buffer					
15	В	72	⊠C benzoic acid is a weak acid in a solution of one of its salts ∴used as buffer					
			☑D propanoic acid is a weak acid in a solution of one of its salts ∴used as buffer					
			Salt sodium fluoride sodium benzoate sodium propanoate sodium methanoate					
			Weak acidhydrofluoricbenzoicpropanoicmethanoicto make saltacidacidacidacid					
16	C	33	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
			The higher the pK_a value the weaker the acid					
			The weaker the acid the more alkaline the pH of a salt of this acid					
			$\square A \triangle G^{\circ}$ is always negative \therefore reaction is always feasible					
			\blacksquare B When ΔG° is positive the reaction is not feasible					
17	Α	84	\square					
			E D When ΔG° is positive the reaction is not feasible					
		1	\square					
40	A	FO	\blacksquare B evaporation increases disorder $\therefore \Delta S$ is positive					
18	A	52	$\mathbf{E}C$ evaporation is an endothermic process $\therefore \Delta H$ is positive					
			\blacksquare evaporation is an endothermic process $\therefore \Delta H$ is positive					
			$\Delta G^{\circ} - \Delta H^{\circ}$ is approx zero \therefore T ΔS° is approx zero (rearrange equation $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$)					
			$\therefore \Delta S^{\circ}$ is approx zero					
	•		\therefore little change in disorder if ΔS° is approx zero					
19	D	64	⊠A CO2(g) released increases disorder greatly					
			B CO(g) and H2(g) released increases disorder greatly					
			EC H2(g) released increases disorder greatly					
			☑D Solid formed replaces solid which reacted so similar levels of disorder					
	-		Rate = $k[NO][Cl_2]$ \therefore Rate = $k \times [NO]^1 \times [Cl_2]^1$					
20	В	84	Reactant NO Cl₂ ∴ Overall order = 1+1 = 2					
			Order 1 1					

			Run	Change	Effect on Rate	Order of reactant		
	_		2+3	[X] ×2	x2	[X] ¹		
21	B	85	1+2	[Y] ×2	x2	[Y] ¹		
		00	1+4	[X] x2 and [Z] x2	x2	if [X]1 then [Z]0		
			Rate = $k \times [X]^1 \times [X]^1$	$[Y]^1 \times [Z]^0 \therefore Rate$	$= k[X]^{1}[Y]^{1}[$	Z] ⁰ :: Rate = k[>	(][Y]	
				radicals at start - free				
22	~	11		ree radicals at end - fre		-		
22	C	46	☑C Propagation: Free 1	radical used up and new	free radical cr	eated during propaga	tion	
			⊠D H• free radicals ar	e not formed in this me	echanism (CH₃• (and Cl• are formed)		
			☑A C-Br bond under	goes heterolytic fissi	ion to form (C	H₃)₃C⁺ and Br⁻ ions		
23	Δ	61	⊠B S _N 1 reactions pro		•	-		
23	N	01	⊠C S _N 2 mechanism &	-	•	•	-	
			\blacksquare D This is S _N 2 mech	anism: 2 particles is	involved in me	chanism (CH₃)₃CBr	and OH ⁻	
	-	10	Electrophile: Spe	cies attracted to	centres of	negative charge		
24	C	63	$OH^- + CO_2 \rightarrow HC$		tracted to -ve o			
			$C_2H_4 + Br_2 \rightarrow C_2$		racted to elect	rons in C=C double bo	nd	
	_		Number of corners = nu					
25	B	56		4 bonds (be careful with • of bonds not used up a			hudrocon	
			Number of bonds not be	•			nyuroyen	
					C-H + 2xC-		1xC≡C	
26	Γ	69	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ = (6)			(1σ+2π)	
20	U	07	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Οσ + 3π			
			🗷 A Chlorine must be	added first so 2 iod	ines cannot ad	ld across C=C doubl	e bond	
			⊠B This is not the o	nly product as I ⁻ ions	complete with	n Cl ⁻ ions in step 2		
27	D	59	⊠C Iodine cannot be	• •	•	•		
	U	07	☑D As I ⁻ ions compe	te with Cl ⁻ ions to cor	nplete step 2			
			2,3-dichlorobuta	ne and 2-chloro-3-iod	dobutane are l	<u>ooth</u> formed		
			⊠A sodium reacts wi			H₅O ⁻ Na⁺ + H₂		
28	Δ	52	B metal oxides do 1					
20	A	52	🗷 C sodium chloride does not react with alcohols					
			D alkalis do not rea					
			•	H5OC2H5 is very flam				
29	C	C 78	B ethoxyethane an				.	
	Ŭ	10	C hydrogen bonding	-	-	• •	xyetnane	
				an ether and is a solv 2-ol is produced ∴ te				
	~	10	B methanol is prod	•	•	•		
30	C	68	⊠C propan-2-ol is pr	• •	•			
		. –		1-ol is produced ∴ pr	•			
			🗷 A Propanal: aldehyd					
21	Л	72	⊠B Propanoic acid: c		•			
31	В	12	⊠C Propan-1-ol: prim	•		hen carboxylic acid	S	
			🗷 D Propan-2-ol: seco	ondary alcohols oxidis	se to ketones	·		
				hols do not react wit				
32	^	35	🗷 B propene: alkenes	do not react with alk	alis			
52	し	55	☑C methylethanoate	• •	•	of alkalis		
				ethers do not react v	with alkalis			
			⊠A all alkanes are no	•		_		
33	(C 51	B cyclohexane is no		-		-	
55			☑C chlorobenzene is	•	•		9	
			IND Methyl group ma	ke flat benzene mole	cule non-pland	r		

			\mathbb{Z}_{A} -NH ₂ group reacts with acid but molecule does not react with alkali
34	34 N	65	B -NH2 group reacts with acid but molecule does not react with alkali
54	U	05	⊠C C2H5NH3 ⁺ Cl ⁻ will react with alkali but molecule does not react with acid
			${f \square}{f D}$ –NH2 group reacts with acid and –COOH group reacts with alkali
			🗷 A Br ₂ /AlCl ₃ will perform the electrophilic substitution of benzene (Bromination)
35	B	41	☑B Free radical substitution will not substitute Br onto benzene ring
35	D	41	$oxtimes \mathcal{C}$ Light catalyses free radical substitution of Br onto alkyl side group but not benzene
			SO3/H2SO4 will perform the electrophilic substitution of benzene (sulphonation)
			☑A Ethanoic acid has a lower pH than phenol as phenol is a weaker acid than
	_		Ethanoic acid (Ethanoic acid pK_a =4.8 and Phenol pK_a =9.9)
36	A	62	B Phenol is acidic and ethanol is neutral
	••	~~	🗷 C Benzoic acid is acidic and ethane-1,2-diol is neutral
			🗷 D Benzoic acid is acidic and methanol is neutral
			🗷 A Primary amines are weaker bases than secondary amines
37	B	16	☑B Secondary amines are stronger bases than primary amines
57	В	10	🗷 C Benzene ring withdraws lone pair of electrons making base weaker
			🗷 D Benzene ring withdraws lone pair of electrons making base weaker
			🗷 A Need a chiral carbon (carbon with 4 different groups attached) to be optical isomer
38	B	71	B Optical isomers: contains chiral carbon and are mirror images of each other
20	В	71	$oxtimes \mathcal{C}$ These are geometrical isomers not optical isomers as they have no chiral carbon
			🗷 D These are not optical isomers as there is not chiral carbon (they are same chemical)
			🗷 A Carbon appears much smaller than iodine in X-ray crystallography
20	^	60	🗷 B Hydrogen appears much smaller than iodine in X-ray crystallography
39	C	60	☑C Iodine is the biggest atom and shows up the biggest in X-ray crystallography
			🗷 D Oxygen appears much smaller than iodine in X-ray crystallography
			🖾 A Agonists cause the same biological response as the body's natural substrate
10	^	01	B Receptors are the units that drugs interact with to cause a biological response
40	C	91	IC Antagonists block the receptor for a chemical to react with
			🗷 D pharmacophores are the shape of a molecule which fits the receptor

)9 Adv Hig	her Chemistry Marking Scheme							
Long Qu	Answer	Reasoning							
1a	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ or [Ne] 3s ² 3p ⁶	Atomic Number of Argon = 18 Argon atoms have 18 electrons s orbitals hold 2 electrons and p orbitals hold 6 electrons							
1b(i)	78.3nm	$E = \frac{L \times h \times c}{\lambda} \therefore \lambda = \frac{L \times h \times c}{E} = \frac{6.02 \times 10^{23} \mathrm{mol}^{-1} \times 6.63 \times 10^{-34} \mathrm{J} \mathrm{s} \times 3 \times 10^8 \mathrm{m} \mathrm{s}^{-1}}{1530 \times 1000 \mathrm{J} \mathrm{mol}^{-1}}$ $= 7.83 \times 10^{-8} \mathrm{m}$ $= 78.3 \mathrm{nm}$							
1b(ii)	$Ar(g) \rightarrow Ar^{+}(g) + e^{-}$	$1^{ m st}$ Ionisation Energy: The removal of one mole of electrons from 1 mole of gaseous atoms							
2a	138 J K ⁻¹ mol ⁻¹	$\Delta S^{\circ} = \Sigma S^{\circ}_{(\text{products})} - \Sigma S^{\circ}_{(\text{reactants})}$ = (2x27) + (3x189) - ((1x90) + (3x131)) = (54 + 567) - (90 + 393) = 621 - 483 = 138 J K^{-1} mol^{-1}							
2b	96kJ mol ⁻¹	$\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(products)} - \Sigma \Delta H_{f^{\circ}(reactants)}$ $= (2x0) + (3x-242) - ((1x-822) + (3x0))$ $= (0 - 726) - (-822 + 0)$ $= -726 - (-822)$ $= 96 \text{ kJ mol}^{-1}$							
2c	696K $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0 \therefore \ T\Delta S^{\circ} = \Delta H^{\circ} \therefore \ T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{96 \times 1000 \text{ J mol}^{-1}}{138 \text{ J K}^{-1} \text{ mol}^{-1}} = 690$								
3a	Mg ²⁺ (aq)	ΔH_2 is the enthalpy of hydration for Mg^{2*} : $Mg^{2*}(g) \rightarrow Mg^{2*}(aq)$							
3b	Lattice Enthalpy or Lattice Breaking Enthalpy	lattice breaking enthalpy (ΔH_1) for MgCl ₂ : Mg ²⁺ (Cl ⁻) ₂ (s) \rightarrow Mg ²⁺ (g) + 2Cl ⁻							
3c	-728kJ mol ⁻¹	ΔH_3 = 2 x enthalpy of hydration for Cl ⁻ = 2x -364kJ mol ⁻¹ = -728kJ mol ⁻¹							
3d	-171 kJ mol ⁻¹	$\begin{array}{rcl} \Delta H_4 & = & \Delta H_1 & + & \Delta H_2 & + & \Delta H_3 \\ \mbox{Enthalpy of solution} & = & \begin{tabular}{l} Lattice breaking \\ enthalpy \\ & = & 2477 & + & (-1920) & + & (2x-364) \\ & = & -171 \ \mbox{kJ mol}^{-1} \end{array}$							
4a	-241 kJ mol ⁻¹	$\Delta H = \Sigma(\text{bond breaking steps}) + \Sigma(\text{bond forming steps})$ = $(1 \times H - H) + (\frac{1}{2} \times O = O) + (2 \times O - H)$ = $(1 \times 436) + (\frac{1}{2} \times 498) + (2 \times -463)$ = $436 + 249 + (-926)$ = -241 kJ mol^{-1}							
4b	Additional energy will be released as H2O(g) condenses into H2O(l)	The enthalpy of combustion forms H_2O in the liquid state at standard conditions (25°C). The reaction in the question forms H_2O in the gaseous state and this mean the energy released as the water condenses has yet to be released.							
5a	1mol l ⁻¹ H⁺ ions 298K (25°C) 1 atmosphere pressure	1 mol l ⁻¹ H⁺ ions is found in 1 mol l ⁻¹ HCl or HNO3							
5b	2IO ₃ ⁻ + 12H ⁺ + 10e ⁻ ↓ I ₂ + 6H ₂ O	Write down the main species involved in the reaction: $IO_3^ I_2$ Balance all atoms except O and H: $2IO_3^ \rightarrow$ I_2 Add H ₂ O to other side to balance O atoms: $2IO_3^ \rightarrow$ $I_2 + 6H_2O$ Add H ⁺ ions to other side to balance H atoms: $2IO_3^- + 12H^+$ \rightarrow $I_2 + 6H_2O$ Add e ⁻ to most positive side to balance charge: $2IO_3^- + 12H^+ + 10e^ \rightarrow$ $I_2 + 6H_2O$							

5с	-574.2 kJ mol ⁻¹	$\Delta G^{\circ} = - nFE^{\circ}$ = - 5 × 96500C mol ⁻¹ × 1.19V = - 574175 J mol ⁻¹ = - 574.175 kJ mol ⁻¹							
	methanoate ion	$HCOOH + H_2O \longrightarrow HCOO^- + H_3O^+$							
6a (i)	HCOO ⁻	acid base conjugate base conjugate acid (donates H*) (accepts H*)							
6a (ii)	$K_{\alpha} = \frac{[HCOO^{-}][H_{3}O^{+}]}{[HCOOH]}$	$K_{a} = \frac{[HCOO^{-}][H_{3}O^{+}]}{[HCOOH][H_{2}O]} \xrightarrow{\text{But } [H_{2}O] = 1}{\text{as } H_{2}O \text{ is also the solvent}} K_{a} = \frac{[HCOO^{-}][H_{3}O^{+}]}{[HCOOH]}$							
6b(i)	0.0783 mol l ⁻¹	$gfm HCOOH = (2x1) + (1x12) + (2x16) = 2 + 12 + 32 = 46g \text{ mol}^{-1}$ $no. \text{ of mol} = \frac{mass}{gfm} = \frac{3.6 \times 10^{-3}g}{46g \text{ mol}^{-1}} = 7.83 \times 10^{-5} \text{ mol}$ $concentration = \frac{no. \text{ of mol}}{volume} = \frac{7.83 \times 10^{-5} \text{ mol}}{0.001 \text{ litres}} = 0.0783 \text{ mol} \text{ l}^{-1}$							
6b(ii)	2.43	$pH = \frac{1}{2}pK_{a} - \frac{1}{2}log_{10} c$ = $(\frac{1}{2} \times 3.75) - \frac{1}{2} \times log_{10}(0.0783)$ = 1.875 - (-0.553) = 2.428							
7a	Rate=k[CH₃COCH₃][H₃O⁺]	The species involved in the rate determining (slow) step are the species involved in the rate equation							
7b	H ⁺ is regenerated during the reaction	H^* ions are a reactant in the slow step but H^* ions are products of the 2 nd step and H^* ions are not used up in the reaction.							
7 c(i)	To neutralise the acid (To quench the reaction)	Sodium hydrogencarbonate will neutralise the H^{\star} ions required for the slow rate determining step. H^{\star} removal stops the reaction.							
7c(ii)	Starch Indicator blue/black purple → colourless	The Iodine present at the start of the reaction will turn starch indicator blue/black. The Iodine is reacted away so at the end point the mixture becomes colourless.							
8a	EDTA	Ethylenediaminetetraacetic acid (EDTA) is a hexadentate ligand used in volumetric analysis and complexes with metal ions in a ratio of 1:1							
8b	Ni ²⁺ ions are green or Ni ²⁺ ions absorb visible light	The green colour of Ni ²⁺ ions is caused by $d \rightarrow d$ transitions where certain wavelengths are absorbed and green light is transmitted. Colorimetric analysis determines which wavelengths are absorbed. The higher the concentration of Ni ²⁺ ions the higher the absorbance.							
8c(i)	It has lone pairs of electrons	Butanedione dioxime has lone (non-bonding) pairs of electrons on the nitrogen atoms in the molecule. These form dative/co-ordinate bonds with the central metal ion.							
8c(ii)	4	Ni ²⁺ ions forms 4 co-ordinate bonds with the 2 ligand molecules of butanedione dioxime.							
8c(iii)	gravimetric analysis	Gravimetric analysis involves the heating of a substance to a constant mass. The roasting of a solid will drive off any water molecules trapped in the structure allowing the measuring of the mass accurately. Once a constant mass has been achieved on heating then the true mass of the substance has been achieved.							
8c(iv)	To allow solid to cool with absorbing moisture	Desiccators are sealed containers which contain a chemical like silica gel to remove all the moisture from the desiccator. It is necessary to let the solid cool down before heating and the desiccator prevents the solid absorbing water from the atmosphere as it cools.							
9a	Butanone <u>or</u> H O H H H—C—C—C—C—H H H H	 Y reacts with 2,4-dinitrophenylhydrazine ∴ Y is an aldehyde or ketone. Y does not react with Benedict's solution or Tollen's reagent ∴ Y is a ketone as aldehydes do not react with Benedict's orTollen's reagent. Butanone is the only structure of a 4 carbon ketone. 							

9b	Substitution or Nucleophillic substitution	$HO^{-}H^{-}H^{-}H^{-}H^{-}H^{-}H^{-}H^{-}H$							
9с		The derivatives of carbonyl compounds with 2,4-dinitrophenylhydrazine (Brady's Reagent) are solids with very well defined melting points. By measuring the melting point accurately in melting point apparatus, the original aldehyde or ketone can be determined from data tables.							
9d	Both structures required:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
10a	conc sulphuric acid & conc nitric acid	A mixture of concentrated sulphuric aid and concentrated nitric acid is required to perform the nitration electrophillic substitution reaction							
10b	Reduction	Reduction is a decrease in the oxygen : hydrogen ratio							
10c	Ethanoic acid	An amide link has formed between the -NH $_2$ group of the aromatic compound and the COOH group of ethanoic acid							
11a	$C_4H_8O_2$	Heaviest peak in mass spectrum = 88amu ∴ mass of A= 88amu Emipirical formula C2H4O: (2x12) + (4x1) + (1x16) = 24 + 4 + 16 = 44amu ∴ 2x(C2H4O) = C4H8O2 = 88amu							
11 b(i)	C=O Carbonyl	The IR adsorption peak at 1745cm ⁻¹ is due to the stretching of the C=O carbonyl group							
11b(ii)	ester	with an ester bond $-\mathcal{C}-\mathcal{O}-\mathcal{C}$							
11c	C₂H₅CO⁺	C₂H₅CO⁺ is the fragment which has a mass of 57 (3×12) + (5×1) + (1+16) = 36 + 5 + 16 = 57							
11d	methyl propanoate	 C4H8O2 is an ester due to the IR absorption peak at 1745cm⁻¹ The carboxylic acid side of the ester has 3 carbons due to the C2H5CO⁺ fragment in the mass spectrum. the alcohol side of the ester must contain the remaining 1 carbon ∴ name of ester is methyl propanoate 							
12a	IF5: I=+5 IF7: I=+7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
12b		5 atoms around a central atom is a trigonal bipyramidal arrangement							
12c	sp ³ d hybridisation or	IF ₇ has 7x I-F bonds and sp ³ d ³ has 7 electrons for forming 7 bonds. IF ₅ has $5x$ I-F bonds and 5 hybridised orbitals between s, p and d are needed: sp ³ d or sp ² d ² orspd ³ contain 5 hybridised orbitals							
12d	Cl atom too small to fit 7 F atoms around it	Iodine is a much larger atom than chlorine and can fit 7 fluorine atoms around the central iodine atom. Chlorine atoms can only fit 5 fluorine atoms around the central atom.							

13a	Temperature/K	 A superconductor behaves in a similar way to conductors at higher temperatures the lower the temperature the lower the resistance at a critical temperature a superconductor quickly attains zero resistance A semiconductor behaves oppositely to conductors with temperature semiconductor increase in resistance with decreasing temperature 								
			Elemer	nt	У	Ba	Cu	0		
			%		13.4	41.2	28.6	16.8		
			No. of m		13.4	41.2	28.6	16.8		
13b(i)	YBa2Cu3O7		No. of me (divide % by g		^{88.9} = 0.151	137.3 = 0.301	63.5 = 0.450	16.0 = 1.050		
					0.151	0.301	0.450	1.050		
			Mole ra (divide through by sm		0.151	0.151	0.151	0.151		
		-			= 1	= 1.99	= 2.98	= 6.95		
			Round to Whole	Number	1	2	3	7		
13b(ii)	+2.33		y 1x +3 + +3 +	Ba ₂ 2x +2 +4	+ +	Cu₃ 3X + 3X + 3X - 3X - 3X X	O ₇ 7x -2 (-14) 7	= 0 = 0 = 0 = +7 = +2.33		
			Element	У	B	Ba	Cu	0		
		٨	Nole Ratio	1		2	3			
		Mole ratio	x Oxidatio No.	ⁿ 1x3	2	x2	3x2	-2X = 0		
13b(iii)	Y2Ba4Cu6O13			3	+ ·	4 +	6 + 13 +	-2X = 0 -2X = 0 -2X = -13 X = 6.5		
		A	tom Ratio	1		2	3	6.5		
		Multiply to Achieve Whole Number		ve 2		4	6	13		